A sharper form of half-discrete Hilbert inequality related to Hardy inequality
نویسندگان
چکیده
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملA multidimensional discrete Hilbert-type inequality
In this paper, by using the way of weight coecients and technique of real analysis, a multidimensionaldiscrete Hilbert-type inequality with a best possible constant factor is given. The equivalentform, the operator expression with the norm are considered.
متن کاملOn a more accurate half-discrete Hardy–Hilbert-type inequality related to the kernel of arc tangent function
By means of weight functions and Hermite-Hadamard's inequality, and introducing a discrete interval variable, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of arc tangent function and a best possible constant factor is given, which is an extension of a published result. The equivalent forms and the operator expressions are also considered.
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the logarithmic function
By means of the weight functions, the technique of real analysis and Hermite-Hadamard's inequality, a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of logarithmic function and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions, the reverses and some particular cases are also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2018
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1819733n